Lessons Learned from the 2017 Long Island Sound and 2021 Rhode Island Tier 1 Eelgrass Surveys: Steps Toward a Comprehensive Monitoring Strategy

Mike Bradley

University of Rhode Island Environmental Data Center

Michael_Bradley@uri.edu

Long Island Sound Eelgrass Collaborative Meeting
December 12th 2023

2021 Rhode Island Tier 1 Eelgrass Survey

- Tier 1 Survey: From Neckles et al. 2012; smallest scale; uses digital orthophotograpy as a basemap
- Utilizes extensive boat surveys with GPS and underwater video
- Goals: Comprehensive survey of all RI's coastal water in one calendar year; examine trends

2006 - 2021 Rhode Island Eelgrass Trends

- Steady declines in all RI since 2012
- Narragansett Bay acreage is holding (for now)
- Declines are mostly in the enclosed basins (Coastal Ponds, Narrow River)

http://www.crmc.ri.gov/sav.html

Narragansett Bay 600 500 408.1 370 400 291 300 acres 200 100 0 2012 2006 2016 2021

Lessons Learned from 2021 Mapping effort

- Record and archive underwater video tracks
- Developed python script (character recognition) to manage underwater video
- Consistent video interpretation classes

Review of LIS Tier 1 Surveys

2017 Tier 1 Results

- Final GIS database created with 169 polygons of eelgrass (49% field visited)
- 1,581 total acres of eelgrass in LIS for 2017 (87% field visited)

Site Name	Acres
New London East	766
Fishers Island	347
New London West	338
Little Nar. Bay	93
Orient Point	39

Total 1,581 acres

2017 Tier 1 Change Analysis (2012 – 2017)

Decrease of 480 acres from 2012 (2061) to 2017 (1581)? Probably not

- Union of 2012 and 2017 polygons; added fields to the database
- Sorted the table by the largest polygons and assessed for change by comparing against the 2012 imagery and data
- Systematically assessed all polygons >= 3 acres (n = 216; 87% of the total area)

		2	2017	
0.1		Yes	No	
2012	Yes	1191	871	
7	No	390	XX	
	area of change een the 2 years	126	1	

Yes = eelgrass mapped in that year

Type of Change	Acres
Probably Gain	103
Probably Loss	254
Uncertain	575
Not Assessed	328
Total	1260

151 acre decrease more likely

Lessons Learned from 2017 Mapping effort

- Need a more standardized approach (i.e record all video, field work, and Little Narragansett Bay (?))
- Eelgrass mapping Taskforce RI (2009)
- Historical imagery needs to be available
- Need an accuracy assessment of the Tier 1 survey method

Task Force Members:

Peter V. August – URI Coastal Institute
Mike Bradley – URI Environmental Data Center
Caitlin Chaffee – RI Coastal Resources Management Council
Giancarlo Cicchetti – USEPA
Marci Cole – Save The Bay
Chris Deacutis – Narragansett Bay Estuary Program
Janet Freedmen – RI Coastal Resources Management Council
Rob Hudson – Save The Bay
Charles LaBash – Director, URI Environmental Data Center
Andy Lipsky – USDA Natural Resources Conservation Service
Chris Powell – Fish & Habitat Biologist
Bob Stankelis – Narragansett Bay National Estuarine Research Reserve

Sue Tuxbury - NOAA National Marine Fisheries Service

Kenny Raposa - Narragansett Bay National Estuarine Research Reserve

Tier 1 Accuracy Assessments

- Accuracy assessments were conducted in 2017 and 2021 for surveys in R.I.
- Based on Users versus Producers Accuracy Matrix (Congalton, 1991)
- Random points were selected to survey within "suitable" potential eelgrass habitat (Short et al., 2002)

A total of 121 video locations were withheld (reference data) to identify errors during the photointerpretation and delineation process (classified data). The overall user's accuracy is for the **2021** mapping is **83%**.

4	eelgrass	not eelgrass
eelgrass	62	14
not eelgrass	9	130

Cla	Classified Data	
eelgrass	not eelgrass	
45	10	
s 10	56	
	eelgrass 45	

Tier 2 Efforts

- Hexagonal approach (Neckles et al., 2012)
- Underwater video transects (Quonchontaug Pond, RI)
- Summary: first survey is great; the rest? Not so much. Too much spatial variability

Tier 2 Efforts – Little Narragansett Bay

- Lead by the Watch Hill Conservancy, Eastern Connecticut University, and URI-EDC
- RTK Transects (wading and snorkel)
- Side scan sonar surveys
- Underwater video plots (20 m circles) –
 diver (GoPro) vs tethered underwater drone

Surveys 2019, 2021, 2022

Courtesy of Dr. Bryan Oakley and E. Watling, ECSU

August et al., 2019

UAS (drone) Imagery Collection June 18th 2017

UAS (drone) Imagery Collection

URI Bay Campus (Narragansett, RI) July 26th 2023

Photo acquisition altitude = 400 ft AGL

Summary and Recommendations

 Tier 1 surveys can determine regional trends but more detailed approaches and data (Tier 2 and 3) are needed

Recommendations

- 1. Tier 1 surveys every 2-3 years
- 2. LIS Collaborative could develop mapping and monitoring approaches (SOP?) in a technical report or publication
- 3. Drone imagery and plot assessments (20 m) for Tier 2 at selected sites; These data and reports need a central repository
- 4. Satellite imagery should be explored for yearly assessments

