Eelgrass Restoration in Shinnecock Bay, NY, & Considerations for Assisted Gene Flow Research Efforts

Improved understanding of eelgrass decline

Improved understanding of eelgrass decline

Shinnecock Bay Restoration Program - Eelgrass

Most of our eelgrass restoration starts with seed collection

Image Credit: Adam Starke

Reproductive shoot collection

 Disperse collection across different healthy eelgrass meadows to minimize negative impacts.

Eelgrass Reproduction

Fig. 2 Flowering stages of Z. marina. Stage 0: Spathes have developed, but styles have not yet erected; stage 1: Styles erect out of spadix; stage 2: Styles bend back into spathe after pollination; stage 3: Half-anthers release pollen; stage 4: Half-anthers have been released, seeds maturing; stage 5: Seeds are starting to release; and stage 6: Post-seed release and the flowering shoot begins to wither. Stages 1–6 are described in more detail in De Cock (1980)

- Generally collect reproductive shoots when seeds are developing and between stages 4 and 5.
- Ideally later stages, but trade-off between collection timing and when seeds start dropping.

Eelgrass Reproductive Shoot Storage

- Raw flowing seawater
- Heavy aeration to minimize anoxia
- No use of freshwater in washdowns, etc.
- Short term (2 weeks max.)

Buoy-deployed seeding

Buoy-deployed seeding: Demonstration of a new eelgrass (Zostera marina L.) planting method

Christopher H. Pickerell ^{a,*}, Stephen Schott ^a, Sandy Wyllie-Echeverria ^b

^a Cornell Cooperative Extension, Suffolk County, Marine Program, 3690 Cedar Beach Road, Southold, NY 11971, USA

^b Center for Urban Horticulture, University of Washington, Box 355685, Seattle, WA, USA

Buoy-deployed seeding

- Short time period in holding tanks
- Release at a similar timing to nature (early July)
- Lots labor upfront to deploy the buoy systems
- Lots of volunteers and serves as an educational event as well

Eelgrass seed storage & broadcast seeding

- Longer time period in holding tanks.
- Water quality issues led to use of a recirculating water system.
- Seeds are held for longer in tanks in downweller silos.
- Released between October and November.
- Allows for separate storage of seeds from individual populations.

Eelgrass recovery

Rebuilding A Collapsed Bivalve Population, Restoring Seagrass Meadows, and Eradicating Harmful Algal Blooms In A Temperate Lagoon Using Spawner Sanctuaries

Christopher J. Gobler ^{1-†}, Michael H. Doall ^{1-†}, Bradley J. Peterson ¹, Craig S. Young ¹, Flynn DeLaney ¹, Ryan B. Wallace ¹, Stephen J. Tomasetti ¹, Timothy P. Curtin ¹, Brooke K. Morrell ¹, Elizabeth M. Lamoureux ², Berry Ueoka ², Andrew W. Griffith ³, John M. Carroll ⁴, Deepak Nanjappa ¹, Jennifer G. Jankowiak ¹, Jennifer A. Goleski ¹, Ann Marie E. Famularo ¹, Yoonja Kang ¹, Ellen K. Pikitch ¹, Christine Santora ¹, Stephen M. Heck ¹, Dylan M. Cottrell ¹, Diana W. Chin ⁵ and Rebecca E. Kulp ¹

Rising water temperatures

Influence of Rising Water Temperature on the Temperate Seagrass Species Eelgrass (Zostera marina L.) in the Northeast USA

Holly K. Plaisted ^{1*}, Erin C. Shields ^{2,3}, Alyssa B. Novak ⁴, Christopher P. Peck ⁵, Forest Schenck ⁶, Jillian Carr ⁷, Paul A. Duffy ⁵, N. Tay Evans ⁶, Sophia E. Fox ⁸, Stephen M. Heck ⁹, Robbie Hudson ¹⁰, Trevor Mattera ¹¹, Kenneth A. Moore ³, Betty Neikirk ^{2,3}, David B. Parrish ^{2,3}, Bradley J. Peterson ⁹, Frederick T. Short ¹² and Amanda I. Tinoco ⁹

Above average summer water temperatures decrease probability of eelgrass presence

FIGURE 1 | SeagrassNet sites located in Northeast USA.

Rising water temperatures

35-year trend, summer water temperature around Long Island

Rising water temperatures

TNC Eelgrass Resiliency Workshop

Most promising pathways towards building eelgrass resilience to thermal stress

Assisted Gene Flow

Assisted Gene Flow

Assisted Gene Flow

Interstate movement of seeds

- Required for testing latitudinal assisted gene flow in eelgrass
- Successful tool in terrestrial world
- Currently being evaluated in NC and VA/MD
- Small scale to assess potential benefits
- Permission from states is variable
- Precedent from other industries to move between states
- Protocols should be adhered to minimize risks

Interstate movement risks can be mitigated

- Genetic implication
 - Populations currently much more isolated compared to historic gene flow levels
 - Restore historic gene flow?
- Pathogens
 - Most found in most estuaries

Innovative Techniques for Large-scale Seagrass Restoration Using Zostera marina (eelgrass) Seeds

Scott R. Marion¹ and Robert J. Orth^{1,2}

- Options for minimizing disease spread by seeds
 - Bleach
 - Copper sulphate
 - Relative evaluation of efficacy is needed
 - Tools to mitigate risks
 - Risk of removing beneficial bacteria?

Copper treatment during storage reduces *Phytophthora* and *Halophytophthora* infection of *Zostera marina* seeds used for restoration

Laura L. Govers^{1,2}, Els M. van der Zee³, Johan P. Meffert⁴, Patricia C. J. van Rijswick⁴, Willem A. Man in 't Veld⁴, Jannes H. T. Heusinkveld⁵ & Tjisse van der Heide¹

Interstate movement logistics

- Form a collective group to share data in real time to speed up the process (time of the essence)
- Assisted gene flow is worth trying and could be a game changer but will be straightforward to assess efficacy and mitigate risks
- If deemed an effective restoration tool to facilitate adaptation of eelgrass to warmer temp, distribution network would need to be developed

