Eelgrass Restoration in Shinnecock Bay, NY, & Considerations for Assisted Gene Flow Research Efforts ### Improved understanding of eelgrass decline ### Improved understanding of eelgrass decline ### Shinnecock Bay Restoration Program - Eelgrass ### Most of our eelgrass restoration starts with seed collection Image Credit: Adam Starke ### Reproductive shoot collection Disperse collection across different healthy eelgrass meadows to minimize negative impacts. ### **Eelgrass Reproduction** Fig. 2 Flowering stages of Z. marina. Stage 0: Spathes have developed, but styles have not yet erected; stage 1: Styles erect out of spadix; stage 2: Styles bend back into spathe after pollination; stage 3: Half-anthers release pollen; stage 4: Half-anthers have been released, seeds maturing; stage 5: Seeds are starting to release; and stage 6: Post-seed release and the flowering shoot begins to wither. Stages 1–6 are described in more detail in De Cock (1980) - Generally collect reproductive shoots when seeds are developing and between stages 4 and 5. - Ideally later stages, but trade-off between collection timing and when seeds start dropping. ### Eelgrass Reproductive Shoot Storage - Raw flowing seawater - Heavy aeration to minimize anoxia - No use of freshwater in washdowns, etc. - Short term (2 weeks max.) ### Buoy-deployed seeding Buoy-deployed seeding: Demonstration of a new eelgrass (Zostera marina L.) planting method Christopher H. Pickerell ^{a,*}, Stephen Schott ^a, Sandy Wyllie-Echeverria ^b ^a Cornell Cooperative Extension, Suffolk County, Marine Program, 3690 Cedar Beach Road, Southold, NY 11971, USA ^b Center for Urban Horticulture, University of Washington, Box 355685, Seattle, WA, USA ### Buoy-deployed seeding - Short time period in holding tanks - Release at a similar timing to nature (early July) - Lots labor upfront to deploy the buoy systems - Lots of volunteers and serves as an educational event as well ### Eelgrass seed storage & broadcast seeding - Longer time period in holding tanks. - Water quality issues led to use of a recirculating water system. - Seeds are held for longer in tanks in downweller silos. - Released between October and November. - Allows for separate storage of seeds from individual populations. ### Eelgrass recovery ### Rebuilding A Collapsed Bivalve Population, Restoring Seagrass Meadows, and Eradicating Harmful Algal Blooms In A Temperate Lagoon Using Spawner Sanctuaries Christopher J. Gobler ^{1-†}, Michael H. Doall ^{1-†}, Bradley J. Peterson ¹, Craig S. Young ¹, Flynn DeLaney ¹, Ryan B. Wallace ¹, Stephen J. Tomasetti ¹, Timothy P. Curtin ¹, Brooke K. Morrell ¹, Elizabeth M. Lamoureux ², Berry Ueoka ², Andrew W. Griffith ³, John M. Carroll ⁴, Deepak Nanjappa ¹, Jennifer G. Jankowiak ¹, Jennifer A. Goleski ¹, Ann Marie E. Famularo ¹, Yoonja Kang ¹, Ellen K. Pikitch ¹, Christine Santora ¹, Stephen M. Heck ¹, Dylan M. Cottrell ¹, Diana W. Chin ⁵ and Rebecca E. Kulp ¹ ### Rising water temperatures ### Influence of Rising Water Temperature on the Temperate Seagrass Species Eelgrass (Zostera marina L.) in the Northeast USA Holly K. Plaisted ^{1*}, Erin C. Shields ^{2,3}, Alyssa B. Novak ⁴, Christopher P. Peck ⁵, Forest Schenck ⁶, Jillian Carr ⁷, Paul A. Duffy ⁵, N. Tay Evans ⁶, Sophia E. Fox ⁸, Stephen M. Heck ⁹, Robbie Hudson ¹⁰, Trevor Mattera ¹¹, Kenneth A. Moore ³, Betty Neikirk ^{2,3}, David B. Parrish ^{2,3}, Bradley J. Peterson ⁹, Frederick T. Short ¹² and Amanda I. Tinoco ⁹ # Above average summer water temperatures decrease probability of eelgrass presence FIGURE 1 | SeagrassNet sites located in Northeast USA. ### Rising water temperatures ### 35-year trend, summer water temperature around Long Island ### Rising water temperatures ### TNC Eelgrass Resiliency Workshop ### Most promising pathways towards building eelgrass resilience to thermal stress #### Assisted Gene Flow #### Assisted Gene Flow #### Assisted Gene Flow #### Interstate movement of seeds - Required for testing latitudinal assisted gene flow in eelgrass - Successful tool in terrestrial world - Currently being evaluated in NC and VA/MD - Small scale to assess potential benefits - Permission from states is variable - Precedent from other industries to move between states - Protocols should be adhered to minimize risks ### Interstate movement risks can be mitigated - Genetic implication - Populations currently much more isolated compared to historic gene flow levels - Restore historic gene flow? - Pathogens - Most found in most estuaries **Innovative Techniques for Large-scale Seagrass Restoration Using Zostera marina** (eelgrass) Seeds Scott R. Marion¹ and Robert J. Orth^{1,2} - Options for minimizing disease spread by seeds - Bleach - Copper sulphate - Relative evaluation of efficacy is needed - Tools to mitigate risks - Risk of removing beneficial bacteria? Copper treatment during storage reduces *Phytophthora* and *Halophytophthora* infection of *Zostera marina* seeds used for restoration Laura L. Govers^{1,2}, Els M. van der Zee³, Johan P. Meffert⁴, Patricia C. J. van Rijswick⁴, Willem A. Man in 't Veld⁴, Jannes H. T. Heusinkveld⁵ & Tjisse van der Heide¹ ### Interstate movement logistics - Form a collective group to share data in real time to speed up the process (time of the essence) - Assisted gene flow is worth trying and could be a game changer but will be straightforward to assess efficacy and mitigate risks - If deemed an effective restoration tool to facilitate adaptation of eelgrass to warmer temp, distribution network would need to be developed