Coastal Water Quality Monitoring being done by the U.S.

Jon Morrison

USGS Long Island Sound Coordinator 6/12/2024

Geological Survey

USGS Coastal Monitoring Overview

- Watershed scale nutrient monitoring and loading calculations
- Major tributary monitoring; Connecting head of tide to estuary mouths Thames River Connecticut River Housatonic River
- Linking coastal watersheds and embayment monitoring Pawcatuck River Mystic River Norwalk River Saugatuck River Southport Harbor Farm River

Development of a USGS Coastal Loading Network

- Major Watershed Nutrient Loads
- Point-Source Contributions
- Non-Point Source Contributions
- Groundwater Discharges
- Assessing Unmonitored Gaps

Long-Term Trends in Concentrations and Loads

Prepared in cooperation with the Connecticut Department of Energy and Environmental Protection

Nutrient, Organic Carbon, and Chloride Concentrations and Loads in Selected Long Island Sound Tributaries: Four Decades of Change Following the Passage of the Federal Clean Water Act

Mullaney, J.R., 2016, Nutrient, organic carbon, and chloride concentrations and loads in selected Long Island Sound tributaries—Four decades of change following the passage of the Federal Clean Water Act: U.S. Geological Survey Scientific Investigations Report 2015–5189, 47 p., http://dx.doi.org/10.3133/sir20155189.

USGS Long Island Sound Nitrogen Loading Dashboard

https://rconnect.usgs.gov/LISdashboard/ Nitrogen Loading from Selected Long Island Sound Tributaries from 1995 to 2021

Plot of combined flux for stations with data for water years 1995 - 2021

Nitrogen Loading from Selected Long Island Sound Tributaries from 1995 to 2021

Leaflet | Tiles Esri, DeLorme, NAVTEO, TomTom, Internap, IPC, USGS, FAO, NPS, NRCAN, GeoBase, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), and the GIS User Community

Seasonal flux for station 01118500: Total nitrogen

Concentration for station 01118500: Total nitrogen

Flux for station 01118500: Total nitrogen

Major Tributaries to Long Island Sound 2020-2024

Lower Housatonic River

Drainage Area = $1,950 \text{ mi}^2$

Lower Connecticut River

Drainage Area = 11,200 mi²

Thames River

Drainage Area = 1,470 mi²

Major Tributary Estuaries

- Complex hydrology, Large watersheds, Hydropower regulation
- Complex salinity structure stratified to well mixed estuaries
- Complex nutrient loading Numerous point sources and large non-point source contributions
- Variable residence times with seasonal hypoxia

Major Tributary Monitoring Elements

- Tidal streamflow gages for calculating nutrient fluxes
- Continuous water quality sampling near top and bottom
- Discrete water quality sampling

Connecticut River Streamflow and Salinity

Hypoxia in Major Tributaries

7/31/2020

7/29/2020

Concentrations of Total Nitrogen and Ammonia from Upstream to the Mouth

Long Island Sound Embayments and Estuaries

Norwalk Embayment May 2021-April 2023

Mystic Embayment May 2021 – April 2023

USGS Embayment Monitoring Objectives

Obtain representative water-quality data under a range of seasonal conditions to characterize the water quality spatially and vertically in each embayment.

Monitor selected water-quality parameters with high temporal resolution to provide time-series data needed for water quality model calibration and evaluation.

Monitor selected physical water-quality parameters at multiple locations in each embayment that will provide understanding of variability at spatial scales.

3

Discrete Water-Quality Data Collection

Measurement	Parameter	USGS Parameter	Units
	Ammonia in seawater (dissolved)	00608	mg/L
	Ammonia + Organic N (TKN)	00625	mg/L
	Nitrate + Nitrite as N (dissolved)	00631	mg/L
	Orthophosphate	00671	mg/L
	Total Phosphorus in brines (Whole)	00665	mg/L
Analytical	Orthophosphate	00671	mg/L
Data from	Alkalinity	39086	mg/L
Discrete Data	Silica in seawater (Dissolved)	00955	mg/L
	Dissolved Organic Carbon (DOC)	00681	mg/L
	Total Suspended Solids (TSS)	00530	mg/L
	Carbonaceous Biological Oxygen Demand (CBOD)	80082	mg/L
	Chlorophyll a phytoplankton	70953	µg/L
	Pheophytin A, Phytoplankton	62360	µg/L
Calculated	Total Nitrogen as N (TKN + (Nitrite + Nitrate))	00600	mg/L
Values	Organic Nitrogen	00605	mg/L

Measurement	Parameter	USGS Parameter	Units
Continuous QW measurements	Water Temperature	00100	Deg C
	Specific Conductance	00095	μS/cm
	Salinity (Computed)	90860	psu
	Dissolved Oxygen	00300	mg/L
	Dissolved Oxygen (Computed)	00301	% saturation
	Turbidity	63680	FNU
	Chlorophyll	00925	RFU
	Photosyntheic Active Radiation (PAR)	99997	µmoles/m²/s
	Barometric Pressure	00025	mmHg

Norwalk River Estuary Velocity Mapping 4/24/23

Select Cooperating Agency Partners

≈USGS

- Connecticut Department of Energy and Environmental Protection
 - Massachusetts Department of Environmental Protection
- Rhode Island Department of Environmental Management
 - **Environmental Protection Agency Region 1**
 - **EPA Long Island Sound Study**
 - **EPA Southeast New England Coastal Watershed Restoration Program.**
 - **Springfield Water and Sewer Commission**
 - **University of Connecticut**

EPA United States Environmental Protection

Vale School of Forestry

Questions?

