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Organisms as “resource providers”



Seagrasses have the highest light 
requirement of any plant on Earth



How do suspension feeding bivalves 
facilitate light to eelgrass?



South Shore Estuaries in Long Island, NY





Hard clams:  A lost source of natural filtration

Time to filter GSB: 

1976: 3 days

2024: > 3 months



Tank without clams

Brown tide densities > 10^5

Tank with clams:  

Brown tide densities < 10^4





GSB76

CBO: Chesapeake Bay, Past; NB: Narangasett Bay; DB: Delaware Bay; 

CBP: Chesapeake Bay, Present. (From Dame, 1996)

GSBP
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Species Densities Used Turnover 

Times

Hard Clams

(Quahogs)

Mercenaria mercenaria

14 individ. m-2

29 individ. m-2

57 individ. m-2

4.5 days

2.2 days

1.1 days

Eastern Oysters

Crassostrea virginica

4 individ. m-2

7 individ. m-2

14 individ. m-2

2.5 days

1.3 days

0.6 days

Blue Mussels

Mytilus edulis

57 individ. m-2

229 individ. m-2

14.5 days

3.6 days

Estimated turnover times, using mean individual 

clearance rates, number of individuals, and tank volume. 

• Current density of hard clams in Great South Bay: 0.5-2 individ. m-2  
Historical density: 53-105 individ. m-2 (Cerrato et al., 2004)

• Current density of oysters in Chesapeake Bay: 0.43 individ. m-2  Historical 
density: 43-150 individ. m-2 (Newell & Koch, 2004)



How do suspension feeding bivalves 
facilitate nutrient availability to 
eelgrass?



Fertilization Experiment
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Fertilization Experiment

Can this 

enhancement of 

nutrient availability 

impact eelgrasses 

response to light 

limitation?



Carroll et al. 2008 MEPS 369:51-63



control clam fertilizer
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The hard clams enabled the eelgrass to live 

under light conditions that it couldn’t have 

alone

Carroll et al. 2008 MEPS 369:51-63



Menge and Sutherland. 1976  Am. Nat. 110:351-369



Bruno et. al.  2003 TREE 18:119-125 

Facilitation increases with 
increasing stress

Bruno et. al.  2003 TREE 18:119-125 



Jackson et al. 2017 JEMBE 489:1-6

What effect does 

nutrient enrichment 

have on reproductive 

shoots?



1

2 3

4
Acropetal development: 
upward from of the 
point of attachment 

rhipidium



spathe

Developed ovaries and 
stage of development



30 patches ~ 2 m2 
were selected



vims.edu

• 36% increase in reproductive shoot 

height

• 40% increase in seeds per spathe

• 99% increase in seeds per shoot

• 23% increase in developed spathes

Jackson et al. 2017 JEMBE 489:1-6



vims.edu

N:P:K
15:3:3

Live clams

Dead clams + N:P:K Dead clams

Ambient 
Controls

Natural
recruitment



Enriched Ambient
Enriched Ambient

Taller reproductive shoots
More rhipidia
More spathes
More seeds
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Enriched Ambient

Taller reproductive shoots
More rhipidia
More spathes
More seeds

Enriched Ambient



Enriched Ambient

Taller reproductive shoots may enhance pollen access from 
outside the patch



Enriched Ambient

Higher seed production will enhance patch stability and resilience





Reproductive output

Genetic diversity

and



What about within the sediments?

Dr. Kara Gadeken



What role can organisms play in modifying toxicity 

stress to the benthic plant community?

Chemosynthetic bivalves reducing sediment sulfide levels

Chin et al. 2021 J.of Ecology 109: 204-217 



Stewart and 

Cavanaugh 

(2006)

Solemya velum

H2S + O2 + CO2 → SO4
-2 + organic C

H2S

O2 + CO2
~97-98% of C requirement

Conway et al. (1998), Krueger et al. (1992)





Images: N. Volkenborn

high O2

low/no O2





Images: D. Chin, www.marlin.ac.uk

glucose

sulfide
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Porewater sulfide concentrations are lower 

when Solemya is present

Images: D. Chin, www.marlin.ac.uk



Eelgrass is more productive (by biomass)

when Solemya is present

Images: D. Chin, www.marlin.ac.uk
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Codakia orbicularis
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What role can the benthic plant community play in 

modifying pH stress to organisms?



Salt marsh

Macroalgae

Seagrass Open water

Wallace et al. 2021 Front Mar Sci 8:611781



Wallace et al. 2021 Front Mar Sci 8:611781
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Hard clam Bay scallops

Low CO2

High CO2

Talmage & Gobler 2010 PNAS 107: 17246
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Larval lipids consistently negatively affected 
 by low pH over ontogeny



Seagrass OASiS: 

Ocean Acidification Sanctuaries and Subsidies



Suspension feeding organisms can increase light 

availability to the benthic plant community

Suspension feeding organisms can increase nutrient 

availability to the benthic plant community

This increased nutrient availability can increase plant 

biomass and productivity as well as reproductive 

output

Chemosynthetic bivalves can lower sediment toxic 

stress to the benthic plant community

Benthic plant communities may effect organism growth 

and survival via reducing pH stress



Dr. Jennifer Reusnik





1. Potential to improve water clarity

2. Potential to trap floating reproductive    

    shoots

3. Potential to dampen wave energy



1. Potential to improve water clarity

2. Potential to trap reproductive    

    shoots and seeds

3. Potential to dampen wave energy

4. Potential to increase sediment   

    nutrient pool



Mike DoallChris Gobler



South Shore Estuaries in Long Island, NY



Shinnecock Bay, 2010



Shinnecock Bay, 2010
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Shinnecock Bay, 2010





Hard clam restoration as a 
means of 

Ecosystem Manipulation



Experimental oyster reefs

Macroalgae ropes

Oysters

Clam spawner sanctuaries

Eelgrass re-seeding

Stony Brook Southampton

ShiRP zones of activity since 2012



Hard Clam Plantings



Shinnecock Bay Restoration Program
Since 2012, ShiRP has planted >4,719,250 adult clams in 124 half-acre plots 
within spawner sanctuaries in Weesuck Creek, Tiana Bay and Jones Creek  



High survivorship
Target Density (25-35 clams m-2)



Larval Transport & Recruitment: Shinnecock Bay

➢ Hydrodynamic models show both 

eastward and westward transport
Weesuck Creek

Tiana Bay



➢ Most of increase in hard clam 
recruitment is in eastern 
Shinnecock Bay

Large increase in hard clam recruitment since onset of ShiRP



Very different population size/age structures between 
eastern and western Shinnecock Bay

➢ Western Shinnecock Bay 
dominated by large 
chowder clams

➢ Eastern Shinnecock Bay 
dominated by smaller 
clams



Commercial harvest has skyrocketed since onset of ShiRP

➢ Annual landings have 

increased over 24X 

since ShiRP began 

planting clams in 

2012



2018 & 2019 were best hard clam harvest years in Shinnecock Bay 
in over 40 years!

NYSDEC report on landings



How has this increase impacted Shinnecock Bay?



Brown tides in Shinnecock Bay, 2008 - 2022



42, 12

14, 60

126, 79

26

7

7, 5

2011, 2014, 2015: 4,000 acres 2017, 2018: 2,000 acres 

PSP closures

No NYS Shellfish closures since 2019
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Bio-Optical Modeling



In 2012, resident time in Western Shinnecock was 

greater than 3 weeks, now it is 8.5 days



West BRUV Aug 28 2014

West BRUV Aug 29 2019



Seagrass Restoration 
through ecosystem change











hand broadcasting 
and burlap bags



2013



2019





Net gain estimate: 104 acres
eelgrass-dominated habitat between Pine Neck Point and East Point

Estimated cost to create: $25,480,000
URI estimated restoration cost analysis: $245,000/acre







@peterson_lab
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