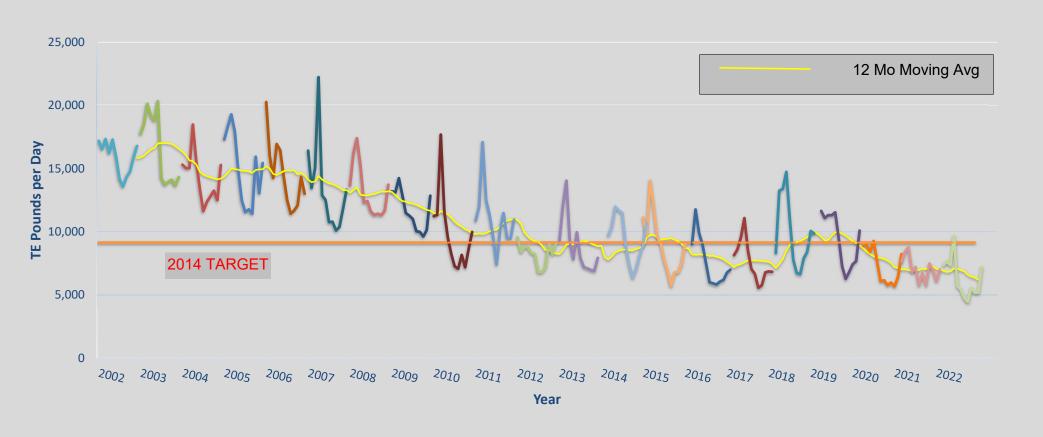
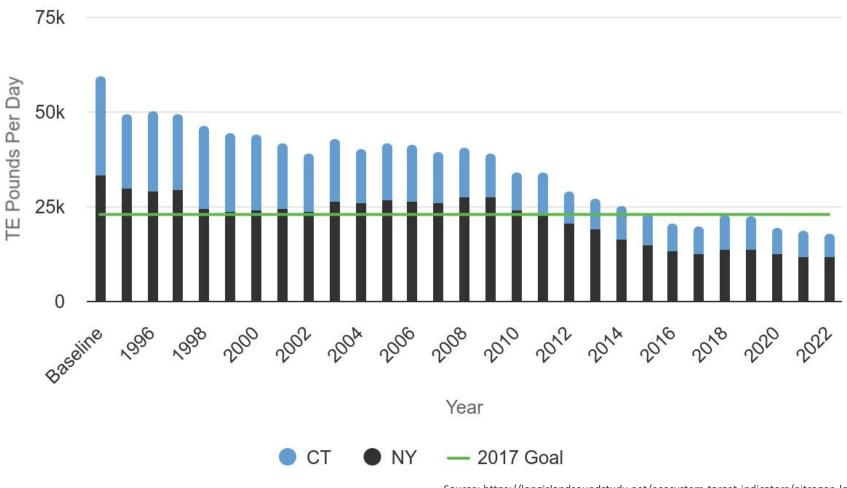


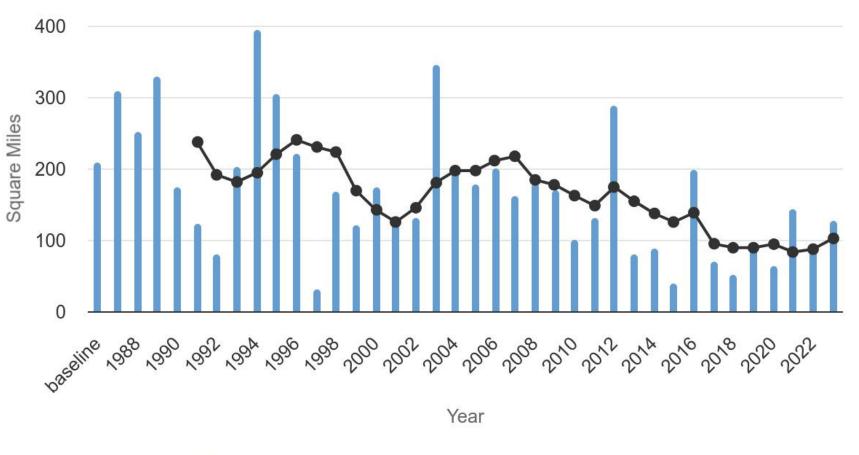
PRESENTATION AGENDA


- Nutrient Management Efforts for LIS and Embayments (Kelly)
- Total Maximum Daily Load (TMDL) with Corresponding WWTP Nitrogen Reductions
- Second-Generation Nitrogen Strategy
- Water Quality Targets for Embayments (Traci)
- Narrative and Numeric Standards
- Approach to Relate Embayment WQ Targets to Nutrient Concentrations and Loads
- Water Quality Planning

NITROGEN TMDL TO MEET DO STANDARDS IN LIS


- 58.5% Reduction in Total Point
 Source Nitrogen Loading
- 25% Aggregate WWTP Reductions for Upstream States (MA, NH, VT)
- 10% Reduction in NPS (across watershed)
- 18% reduction Atmospheric NOx expected (CAA)

Monthly Average Total Equalized Nitrogen Loading to Long Island Sound



Wastewater Treatment Plant Point Sources-Nitrogen Trade Equalized (TE) Loads, 1995-2022

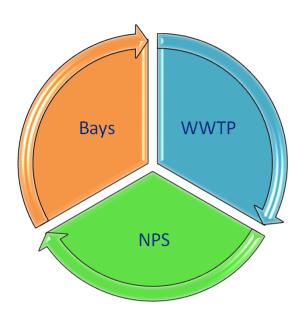
Source: https://longislandsoundstudy.net/ecosystem-target-indicators/nitrogen-loading/

Hypoxia (Dissolved Oxygen ≤ 3 mg/L) in Long Island Sound

Area of Hypoxia

Five-year Running Average

Source: https://longislandsoundstudy.net/ecosystem-target-indicators/lis-hypoxia/


SECOND-GENERATION NITROGEN STRATEGY

1) Wastewater Treatment Plants

- Complete new planned upgrades
- Continue to operate trading program
- 2) Non-Point Sources and Reg Stormwater
 - Enhancements to regulatory and non-regulatory actions

3) Embayments

- Outreach and Education
- Prioritize embayments for analysis and TMDLs (or alternative action plans)
- Study to assess OWTS nitrogen loading in Coastal watersheds

WASTEWATER TREATMENT PLANTS

Continue to operate the Nitrogen Control Program for Long Island Sound

■ Re-Issued the GP for nitrogen discharges applicable to 78 wastewater treatment plants

(1/1/2024 - 12/31/2029)

Continue the Nitrogen Credit
 Trading Program

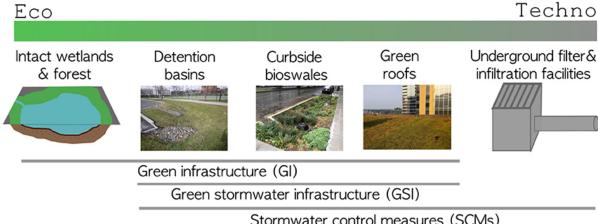
 Additional Nitrogen Reductions at WWTPs ~350 TE lbs./year since 2016 - 2022

❖ Phosphorus reductions at ~43 WWTPs (non-tidal)

Mattabaseett District Water Pollution Control Facility

NON-POINT SOURCE - AGRICULTURE

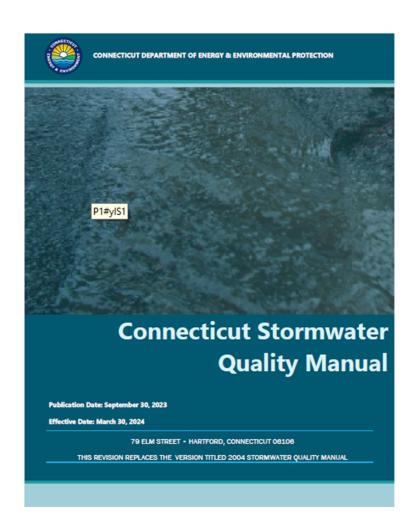
- ❖Issued CAFO* General Permit (1/1/23)
- **❖** Provide funds to eligible projects (Section 319)
- **❖NRCS** Coordination
 - Continue Review of Nutrient Management Plans
 - ❖ Participate in the National Water Quality Initiative (NWQI)


*CAFO = Concentrated Animal Feeding Operations

STORMWATER MANAGEMENT

- **❖** Enhanced the MS4* General Permit (2015)
 - ❖Included expanded coverage, conditions for runoff reduction and LID, and practices to address POCs including nitrogen (TMDLs and impaired waters),
 - Circuit rider to UConn CLEAR to provide outreach and technical support
 - Re-Issued MS4 General Permit (Exp. 9/30/25)
- **❖** Issued DOT Stormwater General Permit (1/1/19)
- Developed support resources for MS4 communities

*MS4 = Municipal Separate Storm Sewer System



This Photo by Unknown Author is licensed under CC BY

Stormwater control measures (SCMs)

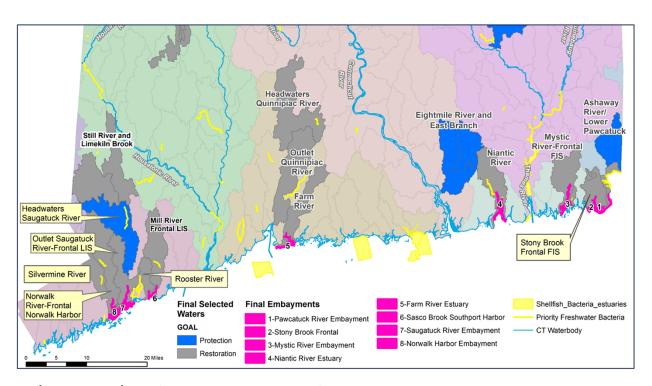
STORMWATER MANAGEMENT

- ❖ Revised the 2004 Stormwater Quality Manual & 2002 Erosion and Sediment Control Guidelines (3/30/24)
 - Improved consistency between the two documents (construction-phase and postconstruction stormwater mgt.)
 - Updated information on Stormwater Structural BMPs
 - Improved consistency with CT DEEP stormwater general permit programs (post-construction stormwater mgt.)
 - Incorporated climate change and resilience considerations
 - Enhanced the usability of the manual

EMBAYMENTS

- Outreach and Education
 - Project with UConn CLEAR to Communicate
 - Eutrophication Susceptibility Study Results (Vaudrey et al. 2016)
 - Sources of Nitrogen and Best Management Practices
 - Solicited input for local level actions
- Onsite Wastewater Treatment Systems
- Continue Sewer Connections and Decentralized Projects
- Conduct Onsite Wastewater Treatment System Study
 - Inventory OWTS located in the lower half of Connecticut
 - Develop a nitrogen loading model for discharges from OWTS to groundwater
 - Visualize data within the model boundary and at the HUC12 level
 - Currently ground-truthing is underway

EMBAYMENTS

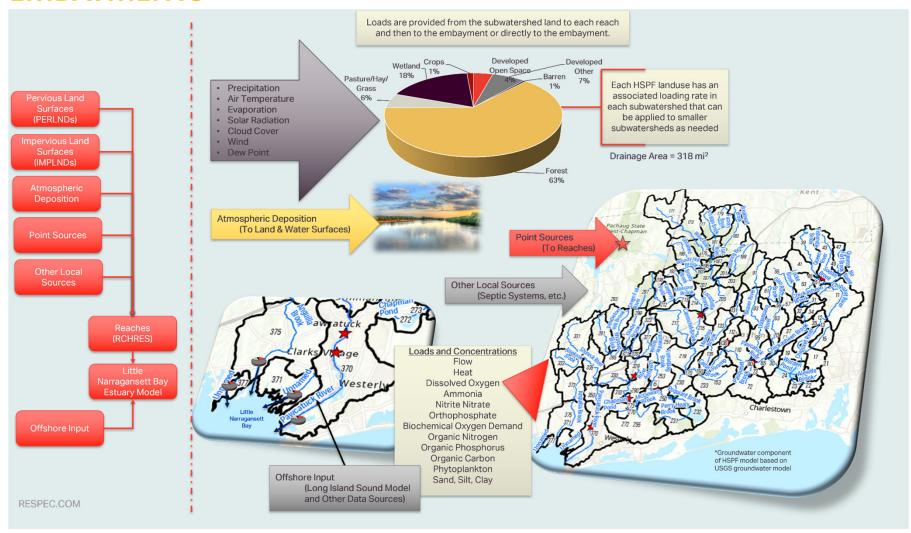

Prioritized Embayments
Integrated Water Planning Mgt.

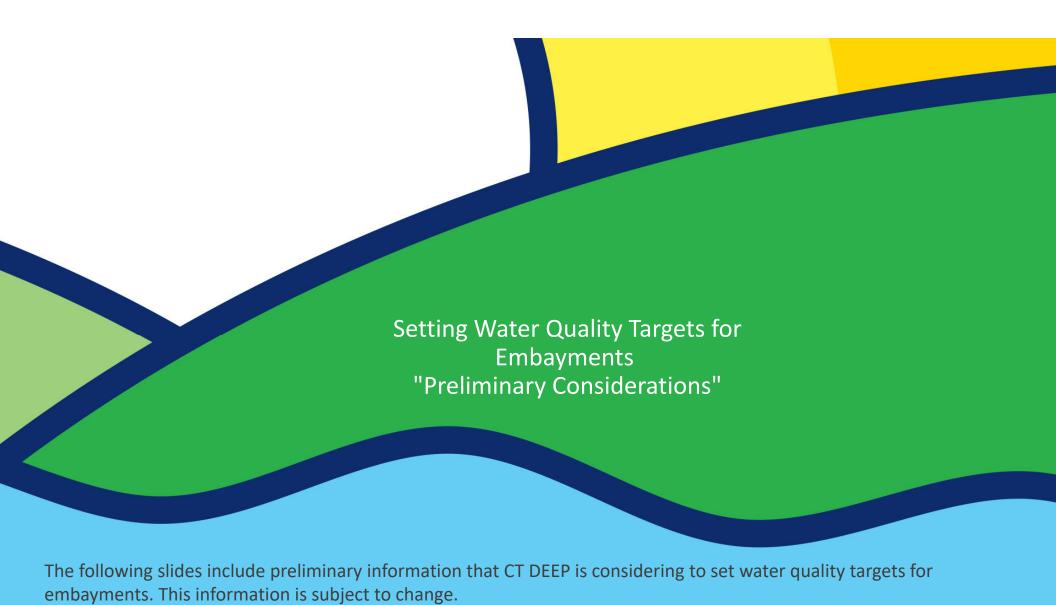
Analysis

- Data Collection
- Modeling (Statewide & Bay Specific)

Develop Action Plans

- TMDLs
- Mitigation Plans



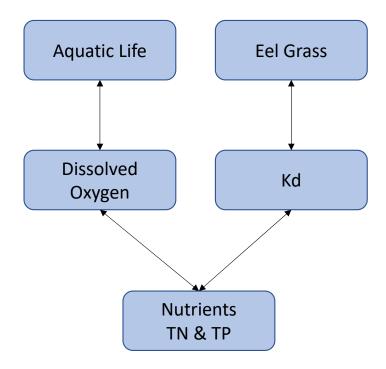

Integrated Water Planning Management 2

The new 10-year planning period spans from October 2022 through September 2032. IWPM 2 will entail the same general process as IWPM 1. CTDEEP is recommending refining the topics that were outlined in IWPM 1 with a robust emphasis on Environmental Justice and Climate Change and recommending no new topics for IWMP 2.

https://portal.ct.gov/DEEP/Water/Water-Quality/Integrated-Water-Planning-Management-Phase-2

EMBAYMENTS

Water Quality Planning to Restore & Protect Water Quality


- A Water Quality Action Plan is a structured scientific evaluation of the water quality conditions within a water body
- It can be designed either to restore or protect water quality
- It links water quality goals to point & nonpoint sources that can affect water quality
- It identifies pollutant loadings needed to achieve goals
- TMDL* is a common type of WQ Action Plan

Water Quality Goals Sources **Pollutant** loading targets

*TMDL: Total Maximum Daily Load Analysis included in the federal Clean Water Act

Applicable Water Quality Standards Provisions

- Coastal Marine Waters
 - Water Quality Classes SA and SB
 - Applicable Designated Use: Habitat for marine fish, other aquatic life & wildlife
- Nutrient Related WQ Standards & Criteria
 - Dissolved Oxygen Criteria
 - Biological Condition Narrative Criteria
 - Turbidity
 - Nutrient Narrative Criteria
 - Natural Conditions Standards

CT Dissolved Oxygen Water Quality Criteria

For Discrete Data:

- Calculate a decimal fraction for each range
 - Cumulative Fraction of Daily data = # fractional days in range / 30 days
 - Compare Cumulative Fraction with # Days Allowed

For Continuous Data:

Can be calculated using a 0.1 mg/l range

$$DOi = 13.0 / (2.80 + 1.84e^{-0.10t_i})$$

where:

DOi = allowable DO concentration (mg/l)

 t_i = exposure interval duration in days

i = exposure interval

Numeric Water Quality Criteria

Table A. Dissolved Oxygen Chronic Cumulative Exposure Criteria for incremental ranges (0.5 mg/l and 0.3 mg/l) applicable to Class SA and SB waters.

DO Range (mg/l)		No. of Days Allowed
<4.8	≥ 4.5	30
<4.5	≥ 4.0	14
<4.0	≥ 3.5	7
<3.5	≥ 3.0	2

Light Availability

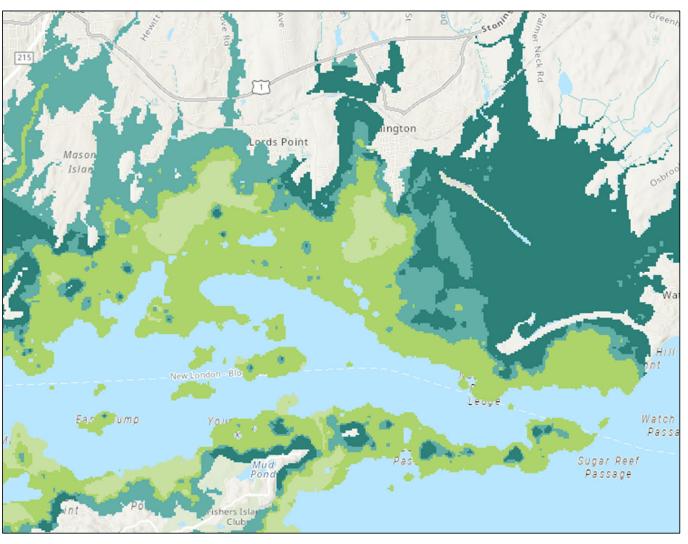
- Translation of Narrative Biological Conditions Standards
- Biological Condition
 - Water quality sufficient to support sustainable, diverse biological communities that may have some changes from natural conditions but have minimal changes in ecosystem function
- Turbidity
 - As associated with natural conditions and resulting from human activity provided appropriate treatment or Best Management Practices are used for control

Data and Approach Taken From EPA Nitrogen Strategy Subtasks Memos: <u>Subtasks F/G Summary of Empirical Modeling & Nitrogen</u> <u>Target Concentrations</u> October 1, 2020

<u>Light Attenuation in Areas Suitable for Eel Grass</u>

Amount of Surface lights required at Eel Grass Colonization Depth: 22%

$$K_d = \ln(i_z/i_o) / (-z)$$

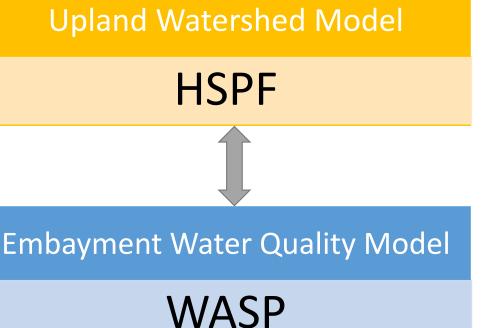

Where:

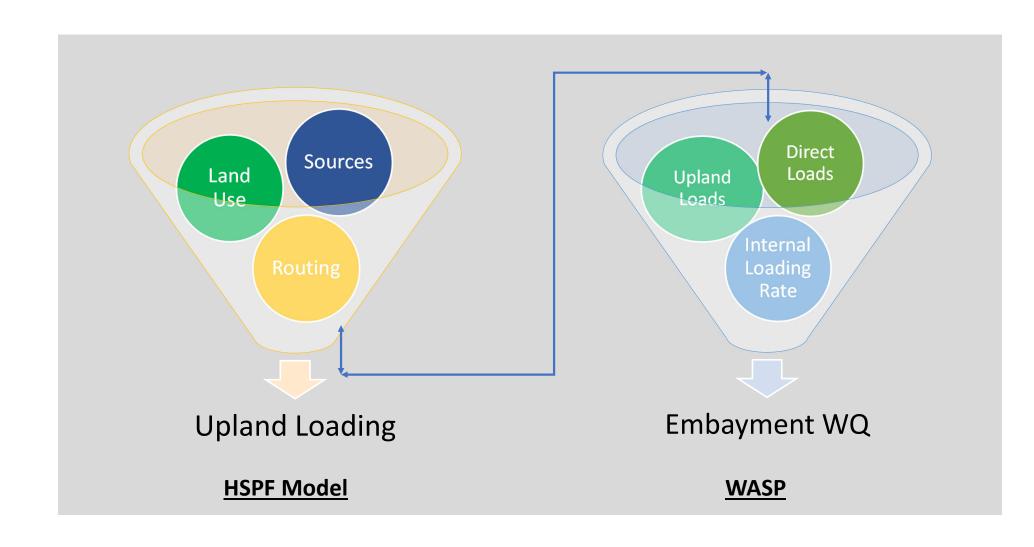
- K_d = light attenuation coefficient in m⁻¹
- I₇ = light at depth
- I_o = light at surface
- Z = colonization depth

Pawcatuck River Embayment		
Colonization Depth (m)	K _d at 22% Light Requirement (m ⁻¹)	
-0.70 (avg)	2.16	
-4.94 (max)	0.31	

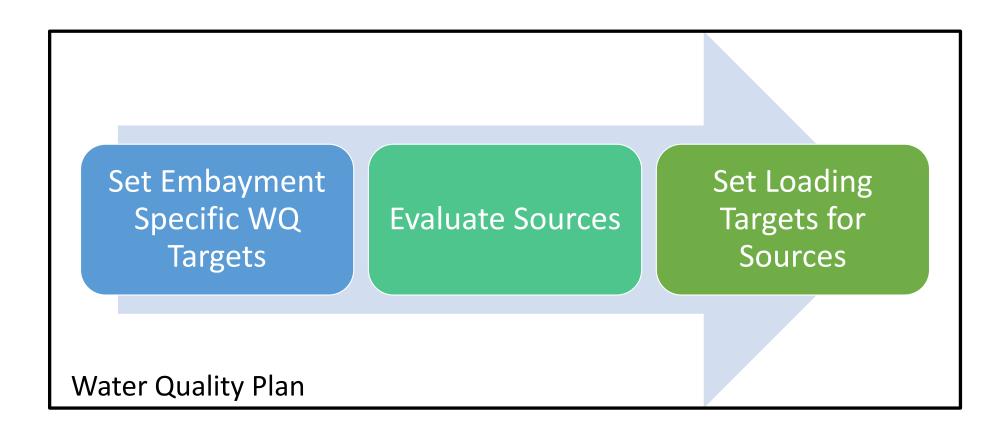
Eel Grass Suitability

Considering Natural Conditions

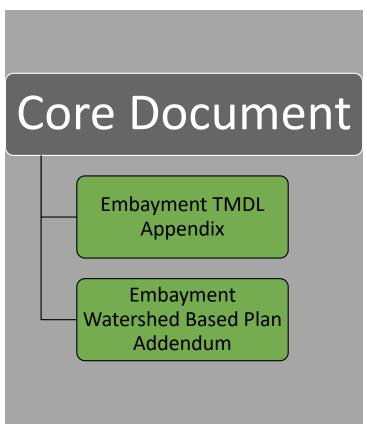

- Translation of Narrative Biological Conditions Standards
- Natural Conditions
 - Natural conditions are independent of Water Quality Standards
- Natural means environmental conditions and communities which are unaffected or minimally affected by human influences



CT DEEP Modeling Approach to Relate Embayment WQ Targets to Nutrient Concentrations and Loads


Models

- Developed a watershed scale approach
- Focus on Nitrogen & Phosphorus and related parameters
- Uses data on water quality and sources
- Models are calibrated & validated for existing conditions
- Models then used to identify embayment nutrient concentrations under current, reference & target WQ conditions



Water Quality Planning Process

Future Water Quality Planning Documents

Core Document (applies Statewide, CTDEEP)

- Contains general information on required elements for TMDLs and Watershed Based Plans
- Includes reference & resource materials to assist implementation

TMDL Appendix for Individual Embayments (CTDEEP)

Watershed Specific Appendices consistent with TMDL requirements

Watershed Plan Addendum for Individual Embayments (Recommended)

- Developing Watershed-Based Plan Addendum to streamline process
- Include EPA's 9-Element components not fully covered in Core document or TMDL Appendix
- Focus on Implementation Activities

Resources

To receive information via email on Water Quality Planning activities from CTDEEP, sign up for the Water Quality ListServ:

Water Quality Planning ListServ (ct.gov)

As projects progress, there will be public informational meetings and opportunities for public review and comment

CT DEEP Pawcatuck
Watershed Nutrient
Project Website

Contact Information:

Kelly Streich
LIS TMDL and Technical Lead
Kelly.Streich@ct.gov / 860.424.3864

Traci lott
Water Quality Section Supervisor
Traci.lott@ct.gov / 860.424.3082

CT DEEP WPLR Planning and Mgt. Division 79 Elm Street, Hartford, CT 06106 Long Island Sound Hypoxia and Nitrogen Control Efforts:

https://portal.ct.gov/DEEP/Water/LIS-Monitoring/LIS-Hypoxia-and-Nitrogen-Reduction-Efforts

Municipal and DOT Stormwater:

https://portal.ct.gov/DEEP/Water-Regulating-and-Discharges/Stormwater/Municipal-Stormwater

Stormwater Management:

https://portal.ct.gov/DEEP/Water-Regulating-and-Discharges/Stormwater/Stormwater-Management

Connecticut Stormwater Quality Manual:

https://portal.ct.gov/DEEP/Water-Regulating-and-Discharges/Stormwater/Stormwater-Manual

Guidelines for Erosion and Sediment Control:

https://portal.ct.gov/DEEP/Water/Soil-Erosion-and-Sediment-Control-Guidelines/Guidelines-for-Soil-Erosion-and-Sediment-Control

Stormwater Pollution Management in CT (interactive map):

https://ctdeep.maps.arcgis.com/apps/MapSeries/index.html?appid=355b12efb86b41de82ed8059b4f2bb2c

Embayment Nutrient Water Quality Demonstration Project:

CT DEEP Pawcatuck Watershed Nutrient Project Website